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Abstract  The behavior of thermoacoustic waves in a nitrogen-filled two-dimensional cavity is 
numerically studied. The vertical walls of the cavity are heated or cooled to generate the 
thermoacoustic waves. Both impulsive and gradual change of the wall temperatures was 
considered.  When a vertical wall is impulsively and nonuniformly heated, the resulting waves 
induce remarkable two-dimensional flows within the enclosure. The observed thermoacoustic 
waves oscillate and eventually decay due to the viscosity and thermal conductivity of the fluid. 
Effects of thermoacoustic wave motion on the developing natural convection process in a 
compressible gas-filled square enclosure were investigated.  In the cases considered, the left wall 
temperature is raised impulsively or gradually while the right wall is held at a specified 
temperature. The top and the bottom walls of the enclosure considered are thermally insulated. The 
numerical solutions were obtained by employing a highly accurate flux corrected transport (FCT) 
algorithm for the convection terms and by coupling these to the viscous and diffusive terms of the 
full Navier-Stokes equations. The strength of the pressure waves associated with the 
thermoacoustic effect and resulting flow patterns are found to be strongly correlated to the rapidity 
of the wall heating process. Fluid thermal diffusivity was found to affect the strength of the 
thermoacoustic waves and the resulting interaction with the buoyancy-induced flow. 
 
Keywords: Thermoacoustic waves, buoyancy-induced convection, flux-corrected transport 
algorithm. 

 
INTRODUCTION 

 
   When a compressible fluid is subjected to a rapid 
temperature increase at a solid wall, part of the fluid in 
the immediate vicinity of the boundary expands. This 
gives rise to a fast increase in the local pressure, and 
leads to the production of pressure waves called 
thermoacoustic waves. The heat transfer effects of such 
waves may be very significant when the fluid is close to 
the thermodynamic critical point or when other modes 
of convection are weak or absent. This motion may 
cause unwanted disturbances in otherwise static 
processes like cryogenic storage or may introduce a 
convective heat transfer mode to the systems in zero-
gravity environment where it is assumed that 
conduction is the only heat transfer mode.  
 
   The problem of thermoacoustic waves in a quiescent 
semi-infinite body of a perfect gas, subjected to a step 
change in temperature at the solid wall was studied 
analytically (Trilling, 1955) in order to determine how 
the sound intensity depends on the wall temperature 
history. The one-dimensional compressible flow 
equations were linearized and a closed-form asymptotic 
solution was obtained using a Laplace transform 
technique. A simplified model (the hyperbolic equation 

of conduction) for thermoacoustic motion was 
compared with one-dimensional Navier-Stokes 
equations model of the phenomena and limitations of 
the simplified approach was discussed (Churchill and 
Brown, 1987). A more general class of solutions for the 
thermoacoustic waves was obtained by using the 
Laplace transform method with numerical inversion for 
equations of the linear wave model for step and gradual 
changes in the boundary temperature (Huang and Bau, 
1995). The equations of the nonlinear wave model were 
numerically solved using finite differences scheme 
modified with a Galerkin finite element interpolation in 
space. A similar analysis for thermoacoustic waves in a 
confined medium was repeated more recently (Huang 
and Bau, 1997). In both geometries the medium 
considered was a gas with Prandtl number of 0.75. 
Thermoacoustic convection phenomena were 
experimentally investigated in a cylinder containing air 
with temperature measurements in normal and reduced 
gravity environment (Parang and Salah-Eddine, 1984). 
No pressure measurement was reported. Experimental 
measurements of pressure waves generated by rapid 
heating of a surface were reported in a relatively recent 
paper (Brown and Churchill, 1995). 
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   Numerical studies of one and two dimensional 
thermoacoustic waves in a confined region have been 
carried out (Ozoe et al., 1980; Ozoe et al., 1990). These 
computational studies describe finite-difference 
calculations of the compressible Navier-Stokes 
equations for a gas with temperature-independent 
thermophysical properties. The solutions were obtained 
by employing first-order upwind schemes to solve the 
governing equations, and as a consequence, the results 
showed effects of substantial numerical diffusion. Also, 
no special attention was paid for preserving the 
accuracy of the reflected acoustic waves from rigid 
walls. The mechanisms of heat and mass transport in a 
side-heated square cavity filled with a near-critical fluid 
were explored in (Zappoli et al., 1996), with special 
emphasis on the interplay between buoyancy-driven 
convection and the piston effect. In a recent paper, it 
was shown that rapid heating of a solid surface 
bounding a region of gas generates a slightly supersonic 
wave with positive amplitude in pressure, temperature, 
density and mass velocity (Brown and Churchill, 1999). 
The one-dimensional predictions were in good 
qualitative agreement with prior experimental 
measurements of the shape, amplitude and rate of decay 
of the pressure waves. Using a high order numerical 
scheme, the early time behavior of thermoacoustic 
waves in a compressible-fluid filled cavity was 
predicted with a computational study (Farouk et al., 
2000) in which temperature dependent fluid properties 
were used. 
 
   In the present paper, the effects of thermoacoustic 
waves on buoyancy-induced flow fields are studied for 
an enclosure (Fig. 1). The horizontal walls of the square 
enclosure are considered to be insulated whereas the 
vertical walls are isothermal. Initially the gas and all 
walls are in thermal equilibrium (T = TR everywhere). 
At t>0, the left wall temperature is increased to a value 
TL (TL > TR) either suddenly or gradually. The strength 
of the thermoacoustic waves depend on the rapidity of 
the wall heating, and the interaction effects are 
significant only for the early times. We also investigate 
the effects of fluid properties on the interaction process. 

Fig.1 Geometry and the boundary conditions of the 
problem. 

 

MATHEMATICAL MODEL 
 
   Interaction of thermoacoustic waves and buoyancy 
problem is described by the Navier-Stokes equations for 
a compressible fluid. These equations is expressed in 
vector form as 
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Where ρ is density, u and v are velocity components, g 
is gravitational acceleration, E is the total energy. 
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Here e is the internal energy and p is pressure. The 
components of the stress tensor τ are: 
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Where µ is the dynamic viscosity and ∇∇∇∇ .v is the 
divergence of the velocity vector. The components of 
the heat-flux vector are written as 
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where k is thermal conductivity and T is temperature. 
The viscous dissipation terms have been omitted from 
the energy equation since they are negligibly small in 
low Mach number flows. The temperature is related to 
the density and pressure through the ideal-gas law: 
 

RTp ρ=              (6) 
 
Where R is the specific gas constant of the medium. 
 

NUMERICAL SCHEME 
 

   The governing equations (except for the diffusion 
terms) are discretized using a control-volume-based 
finite-volume method based on the flux-corrected 
transport (FCT) algorithm. FCT is a high order, 
nonlinear monotone scheme designed to solve a general 
one-dimensional continuity equation with appropriate 
source terms. Time-step splitting technique is used to 
solve the two-dimensional problem addressed here. 
Further details of the FCT algorithm used here are 
documented in (Boris et al., 1993). The diffusion terms 
(the viscous term in the momentum equations and the 
conduction terms in the energy equation) were 
discretized using the central-difference approach and the 
time-splitting technique was used to include the terms in 
the numerical scheme. Time-splitting technique was 
also used to include the gravity term in the y-
momentum equation. 
 
   No-slip boundary conditions were used for all the 
solid walls. Time-dependent boundary conditions for 
the vertical walls and zero-gradient temperature 
boundary conditions for the horizontal walls were used. 
A high-order non-dissipative algorithm such as FCT 
requires rigorous formulation of the boundary 
conditions. Otherwise, numerical solutions may show 
spurious wave reflections at the regions close to 
boundaries and nonphysical oscillations arising from 
instabilities. In the present computational method, the 
treatment proposed by (Poinsot and Lele, 1992) was 
followed for implementing the boundary conditions for 
the density. Along any solid wall, the density is 
calculated from 
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where cM is the acoustic speed, M indicates the location 
of the wall and n is the direction normal to the wall. 
 

RESULTS AND DISCUSSION 
 

   Numerical simulations of the thermoacoustic wave 
motion and its interactions with the buoyancy-induced 
flow fields were performed for a square enclosure filled 
with nitrogen gas, initially quiescent at 1 atm pressure 
and 300 K temperature. For all computations, non-
uniform grid structure was employed with 141×141 
computational cells. Variation of the fluid properties 
with temperature was taken into account. Results of our 
prior investigation (Farouk et al., 1991) on the very 
short time behavior of the thermoacoustic waves 
generated by impulsive and gradual heating of a wall 
were in very good agreement with the results given in 
the literature. In the present study, longer time behavior 
of the pressure waves produced by a step change 
(impulsive heating) at the left wall temperature of the 
enclosure was investigated. For impulsive heating, the 
left wall temperature is given by 
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where T0 is the initial temperature (T0 = TR) and A is the 
overheat ratio. 
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Short time solutions 
Figure 2 shows the resulting pressure wave for sudden 
heating (A = 1.0) along the horizontal mid-plane. The 
nondimensional pressure p* profiles are shown at 
selected times t̂  = 0.25, 1.0, 1.5 and 2.0. The arrows in 
the figure indicate the direction of the wave motion.  
The overheat ratio for the results shown in Fig. 2 is 1.0.  
For the short amount of time that the thermoacoustic 
wave propagation displayed in this figure, the effects of 
horizontal walls on the wave propagating along the 
horizontal mid-plane were negligible.  
 
   A sharp front and a long tail characterize the pressure 
wave. With increasing time, the width of the peak 
broadens and the height decreases. When the pressure 
wave encounters the solid wall on the right side, it is 
reflected and its amplitude increases. Due to the 
relatively high value of A, the wave actually travels 
faster than the reference acoustic speed ao and has 
started to travel back towards the right wall near t̂ = 
1.0. Since the overheat ratio is high, the wave travels 
faster than the reference acoustic speed ao , particularly 
near the heated wall. Hence, the wave is found to 
traverse a longer length (than the cavity width) in time 
t̂ = 1.0. The same applies to the location of the waves at 
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t̂ = 1.5 and t̂ = 2.0. For lower overheat ratios (shown 
later) the wave travels at a speed close to the reference 
acoustic speed. The dashed line in the figure is the 
solution at t̂ = 0.25 from a one-dimensional analysis by 
(Huang and Bau, 1997) for a similar (albeit one-
dimensional) problem. The agreement between the two 
solutions is very good. For a coarser grid (300 x 50), the 
present model predicts the location of the wave front 
accurately. However, finer grids (400 x 50) were 
required to match the height of the wave with the 
solutions given by (Huang and Bau, 1997). 

 

Fig.2 Normalized pressure as a function of the 
normalized horizontal distance 

 
   Figure 3 depicts the pressure variation as a function of 
time at the mid-point of the right wall for the case 
shown in Figure 2. The pressure at the right wall 
remains unchanged until the thermoacoustic wave 
reaches it. The pressure then rises almost 
instantaneously, and then decreases gradually. The 
pressure increases sharply again when the wave finally 
travels back to the right wall after traveling the width of 
the cavity twice. The peak broadens with time, and 
nonlinear effects eventually distort the pressure peaks.  
Eventually, these oscillations are damped and the 
pressure reaches a new equilibrium value, due to the 
energy input to the system via the left wall. 
 
   Strength of the pressure wave is strongly correlated to 
the overheat ratio and pressure oscillations are damped 
with increasing time. 
 
Long time solutions 
Results are shown in Fig. 4 for the midpoint pressure of 
the enclosure, where the Rayleigh number is 104. 
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Fig. 3  Pressure variation in the midpoint of the 
right wall as a function of time 
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Fig. 4 Variation of pressure with time at the 
idpoint of the enclosure for two different overheat 

ratio 

n practice, due to the thermal inertia of the wall and a 
ting system and unavoidable heat losses to the 
ironment, it is difficult to generate a step change 
pulsive heating) in the wall temperature. Therefore, 
 effect of the rapidity of the wall heating process 
adual heating) on the thermoacoustic wave behavior 
s investigated and results are shown in Fig.5 (A=1/3 
 Ra=104) for the time variation of the midpoint 
ssure for three different heating conditions. 
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Fig. 5  Effect of the rapidity of the left wall heating 
process on the midpoint pressure of the enclosure 

(ττττ = 36.82××××10-6 s, A = 1/3) 
 
The gradual heating process was considered with an 
exponential expression: 
 

)]e1(A1[T)t(T h/t
0L

τ−−+=          (10) 
 
Where τh is the time constant of the wall heating 
process. For impulsive heating, τh = 0. For two gradual 
heating cases given in Fig. 5, τh was τ and 20τ, 
respectively where, τ is the travel time of sound waves 
for the length of the enclosure. For first gradual heating 
case (τh = τ) the value for the time constant was 
identified, below which the physical behavior differs 
negligibly from that for a step change in the wall 
temperature. Fig.3 indicates that the rapidity of the wall 
heating process has very significant effect on the 
strength of the pressure waves. When τh = 20τ, the 
strength of the thermoacoustic waves are negligible. 
 
   Computations were carried out for longer times at 
which the buoyancy-induced flow fields develop. In 
Fig. 6 and 7, results obtained for the x- and y- 
components of the velocity vector are shown along the 
horizontal mid-plane of the enclosure for A = 1/3 and 
Ra = 104 at t=0.025 s. 
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Fig. 6 Variation of the x- component of the velocity 

vector along the horizontal mid-plane of the 
enclosure. 

 
   These results include FCT solution for the impulsive 
and gradual heating cases and a pressure-velocity 

formulation based Navier-Stokes code solution (using 
the implicit scheme).  
 
   For the latter solution, the heating process is rather 
slow, such that no thermoacoustic waves are generated. 
These velocity profiles show the significance of the 
thermoacoustic motion on transient heat convection 
process. In case of impulsive heating, strong pressure 
waves completely change the flow characteristics in the 
enclosure and thermoacoustic wave effect dominates the 
fluid motion. This effect is very clearly seen by the 
negative values of the u velocity in Fig. 6. The effect of 
thermoacoustic waves on v velocity is found less 
significant (Fig. 7). With gradual heating (τh=τ) 
thermoacoustic effect losses its power and expected 
flow characteristics of the buoyancy driven fluid motion 
is observed (gradual heating, τh=20τ). Fig. 8 (a) –(d) 
show this process more clearly with the velocity vectors 
for the case where A=1/3 and Ra=104. All four figures 
show the velocity field in the enclosure at a given time 
(t=0.025 s), with different heating conditions of the left 
wall. For impulsive heating, Fig. 8(a), very strong back 
flow is observed as a result of the pressure wave 
reflection on the right wall. 

-0.004

0.000

0.004

0.008

0.012

0.016

0 4 8 12

x (mm)

v 
(m

/s
)

CFD Code Solution

Gradual heating

Impulsive heating

t= 0.025 s

(20τ)

 
Fig. 7  Variation of the y- component of the velocity 

vector along the horizontal mid-plane of the 
enclosure 
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b) Gradual heating (ττττ) 
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c) Gradual heating (10ττττ) 
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Fig. 8  Variation of the velocity vectors and flow field depending on the rapidity of the wall heating process at
t = 0.025 s. a) Impulsive heating, b) Gradual heating (ττττ), c) Gradual heating (10ττττ), d) Gradual heating (20ττττ) 
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   This behavior significantly changes in case of gradual 
heating as shown in Fig. 8(b), 8(c), and 8(d). The effect 
of pressure waves on the process decay with increasing 
time. It is interesting to note that though the 
characteristic time for acoustic wave propagation in the 
enclosure (τ = 36.82×10-6 s) is rather small, the effects 
of the thermoacoustic waves are significant even at t = 
0.025 s, as shown in Fig. 8. 
 
   Traditional computational fluid dynamics techniques 
employing pressure-velocity formulation of the Navier-
Stokes equations fail to predict the thermoacoustic 
effect on the transient buoyancy driven motion. In 
earlier studies (Ozoe et al., 1980; Ozoe et al., 1990), the 
signature of the thermoacoustic waves were not 
predicted accurately – perhaps due to significant 
numerical diffusion and the lack of ‘characteristic’ type 
wall boundary conditions in the scheme (Poinsot and 
Lele, 1992). The flow fields given in the earlier papers 
also do not clearly demonstrate the effects of 
thermoacoustic waves on the buoyancy-induced flows. 
Corresponding pressure fields for impulsive Fig. 8(a) 
and gradual heating (τh=10τ, Fig. 6(c)) cases are given 
in Fig. 9(a) and Fig. 9(b), respectively. In case of 
impulsive heating Fig. 9(a), pressure in the enclosure is 
relatively high and is not changing on the vertical 
direction. 
 
Effect of fluid properties 
The effect of fluid properties on the thermoacoustic 
phenomena was also investigated by considering helium 
filled enclosure. Helium has approximately nine times 
larger thermal diffusivity than nitrogen. With the same 
overheat ratio (A=1/3) and same temperature difference 
(TL-TR) for nitrogen and helium cases, thermoacoustic 
waves generated by sudden (impulsive) heating of the 
left wall of the enclosure travel faster and generate 
stronger pressure waves in helium Fig. 10(a). Very high 
heat transfer coefficients are achieved at the right wall 
of the enclosure at the instances when the acoustic 
waves impinge on the wall Fig. 10(b). For same heating 
condition, computations were carried out for longer time 
to see the development of the flow field. 
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Fig. 9  Variation of pressure in the enclosure at t = 
0.025 s: a) Impulsive heating, b) Gradual heating 

(10ττττ) 
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Fig. 10. Effect of thermoacoustic wave motion on a) 
midpoint pressure and b) right wall heat transfer 
coefficient of the enclosure for two different gases 

 
   Results are shown in Fig. 11(a) and 11(b) for nitrogen 
and helium at t = 0.01 s, respectively. For both cases 
temperature difference (TL-TR) and geometry are same. 
In nitrogen Fig. 11(a), thermoacoustic waves and 
resulting flow are relatively strong and flow filed is one-
dimensional. However, in helium buoyancy-driven flow 
development is starting earlier, as shown in Fig. 11(b). 
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Fig. 11. Distribution of the velocity vectors in the 
flow field for two different gases at t = 0.01 s. a) 

Nitrogen, b) Helium 
 
The effect of the gravitational acceleration was found 
negligible at the early stages of the flow development 
and thermoacoustic behavior. 
 
Thermoacoustic streaming 
 
It is well known that interaction between a solid object 
and fluid in an oscillating flow field creates secondary 
flows called acoustic streaming (Zarembo, 1971). We 
simulated the flow field within the enclosure caused by  
a sinusoidally varying left wall temperature where 
 

)tsin(*A*TT)t(T 00L ω+=   (11) 
 
with  
 
T0=300 K 
A = 1/3 

and f = ω/2π = 20 kHz 
 
The right wall is maintained at 300 K and the top and 
the bottom walls are insulated as before. As the wall 
temperature fluctuates, a corresponding pressure wave 
travels down the enclosure. Time-dependent 
calculations were carried out for 500 cycles. Fig. 12 
shows the instantaneous distribution of the velocity 
vectors in the enclosure at the end of the 500 cycle.  
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Fig. 12  Instantaneous velocity field at the end of 500 

cycles 
 
   This primary flow field changes with time as the left 
wall temperature undergoes variation. The time-
averaged results for the last 100 cycles of the 
computations (Fig. 13) show a non-zero velocity field, 
indicating the existence of steady ‘thermoacoustic 
streaming’. Fig. 14 shows the corresponding streamlines 
for the case given in Fig. 13. For streaming motion to 
occur, velocity field must be a combination of two 
components, a primary un-steady component and a 
secondary steady component.   
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Fig. 13 Time averaged velocity  field  (between 400 – 
500 cycles) 
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Fig. 14. Time averaged flow filed in the enclosure 
(corresponding streamlines) 

 
 

CONCLUSIONS 
 

   The effects of the thermoacoustic waves on the 
transient natural convection process in an enclosure 
were studied by solving the unsteady compressible 
Navier-Stokes equations. The significant effects of the 
pressure waves on the transient natural  convection 
process and flow development are determined by 
utilizing highly accurate FCT algorithm. Significant 
effect of the fluid thermal diffusivity on the 
thermoacoustic convection was observed. It was also 
shown for the first time that a rapidly fluctuating wall 
temperature can cause steady streaming flows in the 
enclosure. 
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